This is the final follow-on post from OTV (Part I) and OTV (Part II).
In this final post I will go through the configuration steps, some outputs and FHRP isolation.
OTV Lab Setup
I setup a mini lab using two Nexus 7000 switches, each with the four VDCs, two Nexus 5000 switches and a 3750 catalyst switch.
I emulated two data center sites, each with two core switches for typical layer3 breakout, each with two switches dedicated for OTV and each with one access switch to test connectivity. Site1 includes switches 11-14 (four VDCs on N7K-1) and switch 15 (N5K), whereas Site2 includes switches 21-24 (four VDCs on N7K-2) and switch 32 (3750).
To focus on OTV, I removed the complexity from the transport network by using OTV on dedicated VDCs (four of them for redundancy), connected as inline OTV appliances and by connecting the OTV Join interfaces on a single multi-access network.
This is the topology:
Before configuring OTV, the decision must be made how OTV will be integrated part of the data center design.
Recall the OTV/SVI co-existing limitation. If core switches are in place, which are not the Nexus 7000 switches, OTV may be implemented natively on the new Nexus 7000 switch/es or using a VDCs. If the Nexus 7000 switches are providing the core switch functionality, then separate VDCs are required for OTV.