In this post I would like to cover the base of what is needed to know about the Cisco Fabric Extender that ships today as the Nexus 2000 series hardware.
The Modular Switch
The concept is easy to understand referencing existing knowledge. Everybody is familiar with the distributed switch architecture commonly called a modular switch:
Consider the typical components:
- Supervisor module/s are responsible for the control and management plane functions.
- Linecards or I/O modules, offers physical port termination taking care of the forwarding plane.
- Connections between the supervisors and linecards to transport frames e.g., fabric cards, or backplane
circuitry. - Encapsulating mechanism to identify frames that travel between the different components.
- Control protocol used to manage the linecards e.g., MTS on the catalyst 6500.
Most linecards nowadays have dedicated ASICs to make local hardware forwarding decisions, e.g., Catalyst 6500 DFCs (Distributed Forwarding Cards). Cisco took the concept of removing the linecards from the modular switch and boxing them with standalone enclosures. These linecards could then be installed in different locations connected back to the supervisors modules using standard Ethernet. These remote linecards are called Fabric Extenders (a.k.a. FEXs). Three really big benefits are gained by doing this.
- The reduction of the number of management devices in a given network segment since these remote linecards are still managed by the supervisor modules.
- The STP footprint is reduced since STP is unaware of the co-location in different cabinets.
- Another benefit is the cabling reduction to a distribution switches. I’ll cover this in a later post. Really awesome for migrations.
Lets take a deeper look at how this is done.